NEW YORK INSTITUTE OF **TECHNOLOGY**

College of Osteopathic Medicine

INTRODUCTION

Osteopathic medical students (OMS) learn how to integrate osteopathic manipulative treatment (OMT) into patient care for pain and function during years one and two (OMS2). OMS learn how to diagnose the six most prevalent osteopathic findings observed in Dr. Philip E. Greenman's study of patients with chronic low back pain (LBP)¹:

- Lumbar spine non-neutral dysfunction
- Pubic symphysis dysfunction
- Sacral nutation restriction
- Innominate shear dysfunction
- Short-leg syndrome
- Muscle imbalance and/or impact of joint dysfunction on trunk and lower extremities.

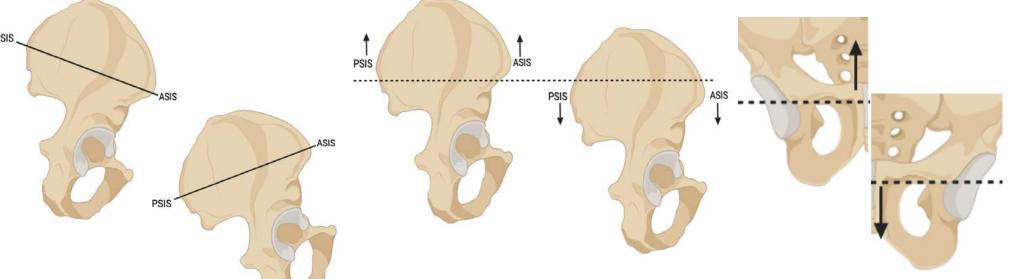
The 30-second single leg balance (SLB) test evaluates for muscle imbalance of trunk and lower extremities. The relationship between chronic LBP and impaired SLB and its prevalence in OMS are unclear. It is also not clear which somatic dysfunctions are prevalent in impaired SLB.

Previous studies found the prevalence of LBP in medical students and its burden on quality of life^{2,3}. However, most osteopathic physicians do not utilize or integrate OMT in practice ⁴.

Previous studies suggest participation in research while learning osteopathic medicine may improve learning⁵. In this study, as second year OMS participated in a prevalence study of sacroiliac and pubic symphysis joint shears in impaired SLB and chronic LBP, we investigated the impact of research participation on their understanding of chronic LBP exam findings and management. Concurrently, we can utilize the findings documented by OMS2 to study the prevalence of sacroiliac and pubic symphysis joint shears in those with impaired SLB and chronic LBP.

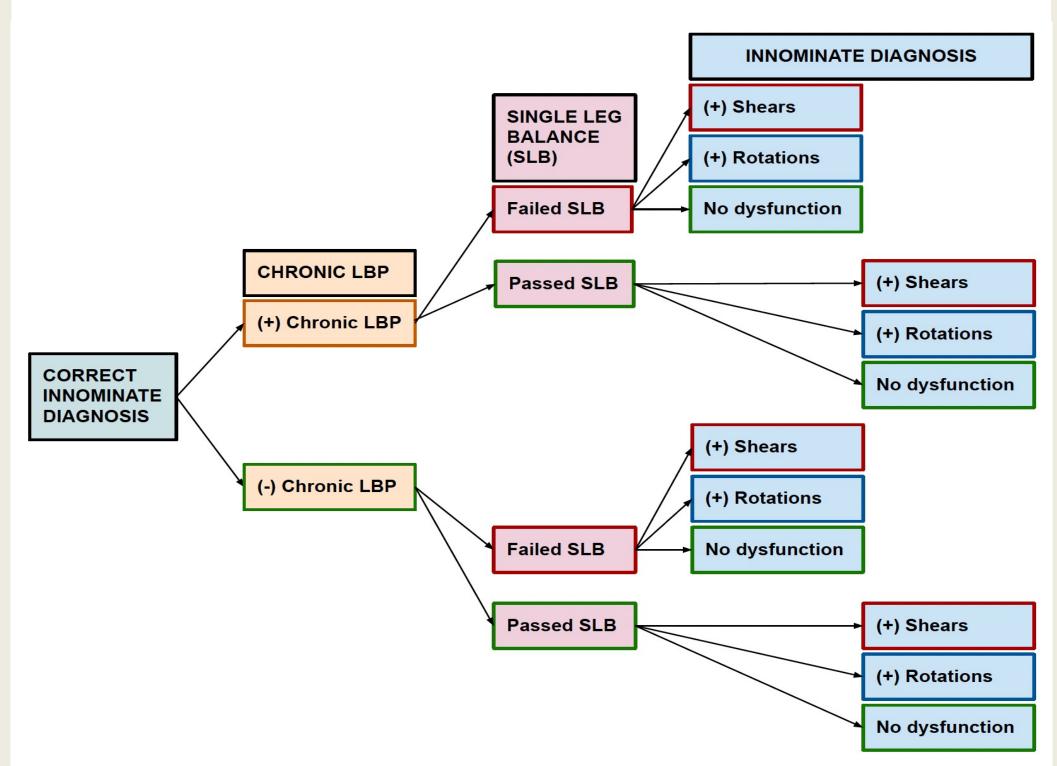
OBJECTIVE

Primary: To investigate the impact of participating in a prevalence study on OMS's understanding of exam findings pertinent to assessment and plan for chronic LBP.


Secondary: Assess the prevalence of sacroiliac and pubic symphysis joint shears in those with impaired SLB and chronic LBP among OMS2.

CONTACT

Marichelle Pita NYIT College of Osteopathic Medicine Email: mpita@nyit.edu Phone: 646-460-5904


IRB Approval: BHS-1519 Study Design: Observational Cross-Sectional Study. During an osteopathic medicine diagnosis and treatment LBP laboratory session, second year OMS were paired. OMS completed REDCap worksheets as they performed history and physical exam, including a 30-second SLB test. At the end of the self-completed REDCap worksheet, OMS were asked if this study improved their understanding of chronic LBP history, exam findings, and management.

After duplicates and incomplete surveys were removed, 99 REDCap responses were analyzed. Innominate diagnoses named by students were classified as correct or incorrect based on documented physical exam findings describing the standing flexion test, positioning of posterior superior iliac spine (PSIS), anterior superior iliac spine (ASIS), and pubic tubercle relative to the contralateral side. In responses with correctly named innominate diagnosis (N=80), the prevalence of chronic LBP, impaired SLB, and innominate diagnoses (shears, rotations, or no dysfunction) were calculated.

For the medical education question in which we asked OMS2 if this study improved their understanding of chronic LBP, exam findings, and management, the outcome variable was provided on a four-point ordinal scale: "Yes, definitely," "Somewhat," "Not sure," and "Not at all." Independent data was analyzed using chi-square test.

The prevalence of chronic LBP, impaired SLB, innominate rotations, and innominate shears in OMS2 were calculated, and associations were analyzed using chi-square test.

Medical Students Learn Through Research on Prevalence of Sacroiliac and Pubic Symphysis Joint Shears in Chronic Low Back Pain and Impaired Single Leg Balance

METHODS

Figure 1. Left to Right: Anterior and Posterior Innominate Rotations, Superior and Inferior Innominate Shears, and Superior and Inferior Pubic Shears

Correct Innominate Diagnosis = 80 (80.8% out of 99)

Diagnosis/Test Chronic Low Back Pain (L

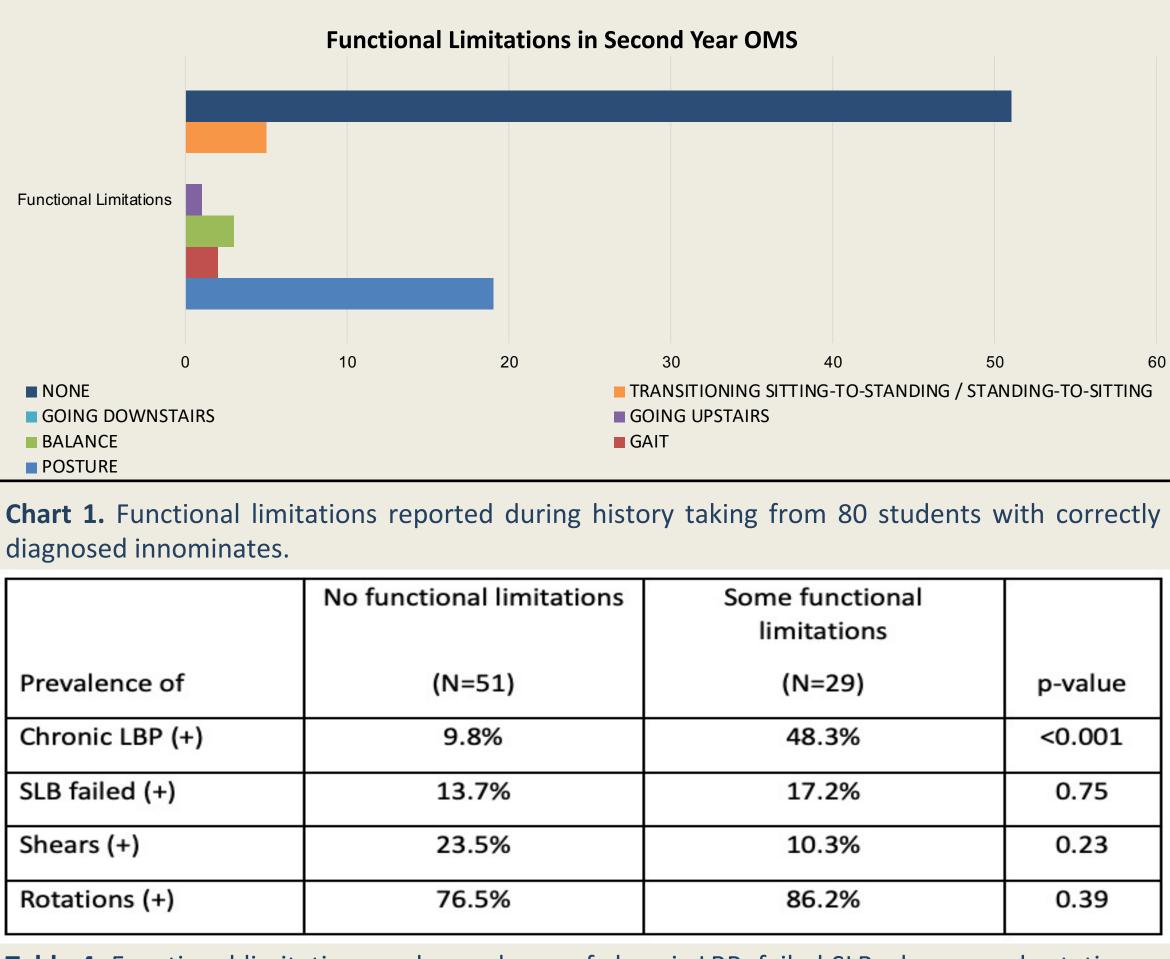
Single Leg Balance (SLB)

Innominate Diagnosis

Table 1. Report of chronic LBP, impaired SLB, and innominate diagnoses (shears, rotations, no dysfunction) by 80 OMS with correctly named innominate diagnoses.

		Innominate Diagnosis			
Chronic LBP	SLB	Shears (+)	Rotations (+)	No Dysfunction	p-value*
Positive	Failed	1 (100.0%)	0 (0.0%)	<mark>0 (</mark> 0.0%)	0.003
	Passed	1 (5.6%)	17 <mark>(</mark> 94.4%)	0 (0.0%)	
Negative	Failed	1 (9.1%)	9 (81.8%)	1 (9.1%)	0.06
	Passed	12 (24.0%)	38 (76.0%)	0 (0.0%)	

Table 2. Association among chronic LBP, SLB, and innominate diagnoses in 80 OMS with correct innominate diagnoses. *The p-value is the result of chi-square test.


	Single Leg Balance		
Chronic LBP	Failed	Passed	p-value*
Positive	1 (5.3%)	18 (94.7%)	0.17
Negative	11 (18.0%)	50 (82.0%)	

Association between Chronic LBP and Innominate Diagnosis

	Innominate Diagnosis			
Chronic LBP	Shears (+)	Rotations (+)	No Dysfunction	p-value*
Positive	2 (10.5%)	17 (89.5%)	0 (0.0%)	0.48
Negative	13 (21.3%)	47 (77.0%)	1 (1.6%)	
*n-value is the resu	It of chi-square test	1000 (1000)		

	Innominate Diagnosis			
SLB	Shears (+)	Rotations (+)	No Dysfunction	p-value*
Failed	2 (16.7%)	9 (75.0%)	1 (8.3%)	0.06
Passed	13 (19.1%)	55 (80.9%)	0 (0.0%)	
*	It of chi aquara tact			•

Table 3. Associations between chronic LBP and SLB, chronic LBP and innominate diagnosis, and SLB and innominate diagnoses in 80 OMS with correctly diagnosed innominates. The p-values were obtained from chi-square test.

Table 4. Functional limitations and prevalence of chronic LBP, failed SLB, shears, and rotations in 80 OMS with correctly diagnosed innominates.

Figure 2. Innominate Diagnosis Classification Tree.

Marichelle Pita, OMS III; Jayme Mancini DO, PhD; Min-Kyung Jung, PhD Department of Osteopathic Manipulative Medicine, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY

RESULTS

		Count (Percent)
LBP)	Positive	19 (23.8%)
	Negative	61 (76.2%)
	Either Right or Left Failed	12 (15.0%)
	Both Right and Left Passed	68 (85.0%)
	Shears	15 (18.8%)
	Rotations	64 (80.0%)
	No Dysfunction	1 (1.2%)

Association among Chronic LBP, SLB and Innominate Diagnosis

p-value is the result of chi-square test.

Association between SLB and Innominate Diagnosis

p-value is the result of chi-square test.

No functional limitations	Some functional limitations	
(N=51)	(N=29)	p-value
9.8%	48.3%	<0.001
13.7%	17.2%	0.75
23.5%	10.3%	0.23
76.5%	86.2%	0.39

When asked if the study improved their understanding of chronic LBP exam and management, responses from 99 OMS were:

Chronic LBP was documented in 23.2% of 99 OMS. Innominates were correctly diagnosed in 80.8% (80/99). In this group:

- 12 (15.0%) failed SLB.

Results suggest that OMS believed their understanding of chronic LBP exam findings and management improved through participation in this study. In the prevalence aspect of the study, we found that the relationship between chronic LBP and impaired SLB prevalence in this population was not significant. In OMS with chronic LBP, functional limitations, such as impairment in balance, posture, and difficulty transitioning between sitting and standing, were more frequently reported. In OMS who failed SLB, there were more innominate rotations than shears.

Limitations: Though no identifiers were collected, and responses were not graded, social desirability bias may limit this study's ability to determine if participation in prevalence research improved OMS's understanding of chronic LBP exam and management. As a prevalence study, limitations include inaccurately identifying anatomical landmarks and innominate diagnoses among OMS2.

Future studies could determine which other joint dysfunctions affect SLB, include OMS from several schools, and consider functional measures even when pain is not a complaint. Further research may also include an assessment of OMS's baseline knowledge of chronic LBP exam and management prior to participation in the prevalence study. The positive impact of participating in a prevalence research on OMS's understanding of chronic LBP exam and management would also benefit from future studies that include faculty-student interrater reliability to avoid incorrect physical exam entries.

- ed.). Wolters Kluwer.

RESULTS

• 50.5% "Yes, definitely," 40.4% "Somewhat," 3% "Not at all."

• There were 6 missing responses (6%) for this question.

• Innominate diagnosis: 64 rotations (80.0%), 15 shears (18.8%), and 1 with no dysfunction (1.2%).

• 19 (23.8%) had chronic LBP. 1 had impaired SLB and shear. On the other hand, of the remaining 18 OMS with chronic LBP and passed SLB, 17 had innominate rotations and 1 had shear dysfunction.

• For association between chronic LBP, SLB, and innominate diagnosis, the p-values were 0.003 and 0.06, although significant results may not be reliable because counts are sparse.

29 OMS had functional limitations, and 48.3% of which had chronic LBP. The remaining 51 OMS had no functional limitations but 9.8% reported chronic LBP (p-value < 0.001).

CONCLUSIONS

REFERENCES

• DeStefano, L. A. (2017). Chapter 20: Common Clinical Problems of the Lower Quarter. In Greenman's principles of Manual Medicine (5th

2. Amelot, A, Mathon, B, Haddad, R, Renault, MC, Duguet, A, Steichen, O. Low Back Pain Among Medical Students, SPINE: October 1, 2019 Volume 44 - Issue 19 - p 1390-1395. doi: 10.1097/BRS.0000000000003067 Vujcic I, Stojilovic N, Dubljanin E, Ladjevic N, Ladjevic I, Sipetic-Grujicic S. Low Back Pain among Medical Students in Belgrade (Serbia): A

Cross-Sectional Study. Pain Res Manag. 2018 Feb 6;2018:8317906. doi: 10.1155/2018/8317906. PMID: 29623146; PMCID: PMC5829428. 4. Licciardone JC, Schultz MJ, Amen B. Osteopathic Manipulation in the Management of Chronic Pain: Current Perspectives. J Pain Res. 2020 Jul 20;13:1839-1847. doi: 10.2147/JPR.S183170. PMID: 32765058; PMCID: PMC7381089.

Heath DM, Makin IR, Pedapati C, Kirsch J. Use of real-time physiologic parameter assessment to augment osteopathic manipulative treatment training for first-year osteopathic medical students. J Am Osteopath Assoc. 2014 Dec;114(12):918-29. doi: 10.7556/jaoa.2014.179. PMID: 25429082.