## The Student Outcomes of the BS in CS Program

The department has established student outcomes so that upon graduation, students with a degree in the undergraduate Computer Science program at NYIT will demonstrate an ability to:
a. Apply knowledge of computing and mathematics appropriate to the discipline.
b. Analyze a problem and identify and define the computing requirements appropriate to its solution.
c. Design, implement, and evaluate a computer-based system, process, component, or program to meet desired needs.
d. Function effectively on teams to accomplish a common goal.
e. Understand professional, ethical, legal, security, and social issues and responsibilities.
f. Communicate effectively with a range of audiences.
g. Analyze the local and global impacts of computing on individuals, organizations, and society.
h. Engage in and recognize the need for continuing professional development.
i. Use current techniques, skills, and tools necessary for computing practice.
j. Apply mathematical foundations, algorithmic principles, and computer science theory in the modeling and design of computer-based systems in a way that demonstrates comprehension of the tradeoffs involved in design choices.
k. Apply design and development principles in the construction of software systems of varying complexity.

In order to ensure that students achieve student outcomes a-k, the faculty has built the curriculum such that key concepts are introduced, developed, and reinforced throughout a students' time in the program. Table 4.A. 1 below shows the relationship between courses in the program and Student Outcomes $(\mathrm{a}-\mathrm{k})$.

Relationship between CS Program Courses and Student Outcomes

| ETCS/CSCI | a | b | c | d | e | f | g | h | i | j | k |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 105 |  |  |  |  | X |  |  | X |  |  |  |
| 108 |  |  |  |  | X | X | X |  |  |  |  |
| 125 |  |  | X |  |  | X |  |  | X |  | X |
| 155 | X |  | X |  |  |  |  |  | X | X |  |
| 185 |  |  | X |  |  | X |  |  | X |  | X |
| 235 | X |  |  |  |  |  |  |  | X |  |  |
| 260 | X |  | X |  |  | X |  |  |  |  |  |
| 270 | X |  |  |  |  |  |  |  |  |  |  |
| 312 | X | X |  |  |  |  |  |  |  |  |  |
| 318 | X |  | X |  |  |  |  |  | X |  |  |
| 300 | X | X |  | X | X | X |  |  |  |  |  |
| 330 | X | X |  |  |  |  |  |  | X |  |  |
| 335 | X | X |  |  |  |  |  |  | X |  |  |
| 354* |  |  |  |  | X | X |  |  |  |  |  |
| 355* | X | X | X |  |  | X |  |  | X | X |  |
| 345 |  |  |  | X |  |  |  |  | X |  |  |
| 380 |  |  | X | X |  | X |  |  | X | X | X |
| 385* |  | X | X |  | X |  |  |  | X |  |  |
| 405* | X |  | X |  |  |  |  |  | X |  |  |
| 415* | X | X | X |  |  |  |  |  | X |  |  |
| 440* |  | X | X |  |  |  |  |  |  |  |  |
| 445* |  |  | X |  |  |  |  |  | X |  |  |


| 455 | x | x | x | x | x | x | x | x | x | x | x |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IENG 400 |  |  |  |  | x | x | x |  |  |  |  |

