CPI Improving PLO Report (AY22-23)

Name of the program: <u>M.S. in Energy Management</u>

Babak D. Bedealt

Dean' signature:

Date of Submission: <u>6/30/2023</u>

Department Chair or Director: <u>Robert N. Amundsen, Ph.D.</u>

PLO assessment plan (2022-2025) is posted through this link:

http://www.nyit.edu/planning/academic_assessment_plans_reports

This is a report of its implementation for year 2022-2023.

1. Program Learning Outcomes (PLOs) Assessed in AY 22-23:

Graduates of the M.S. in Energy Management program are expected to:

1. Compare and contrast methods and equipment which are used to reduce energy consumption in buildings.

1

2. Analyze conventional and alternative energy technologies.

2. Method of Assessment

Our direct method of assessment is based on Faculty Course Assessment Reports (FCARs) which are submitted by the faculty for each course they teach.

The FCAR requires the faculty member to identify course-specific learning outcomes (LO's) for his/her course and to establish appropriate performance tasks (APTs) with appropriate documentation to assess to what extent the Student Outcomes are being met. These APTs may be quizzes, exam questions, reports, projects, presentations, etc. Each student's APT is then scored with the method shown in the table below to create an EGMU vector for that specific Student Outcome and a corresponding assessment metric.

The department has determined that the minimum level of quality that it felt was necessary in order to produce graduates that will ultimately achieve our Program Educational Objectives is an EGMU score of 2.0 for each Student Outcome. This score of 2.0 was chosen by the department because in the EGMU score of 2.0 indicates Good and therefore represents what a student would need in order to satisfy the requirements for graduation. A typical EGMU vector for a class with 19 students in which the APT was the third problem of the first exam might be (8, 9, 1, 1) which would signify that 8 students demonstrated a complete and accurate understanding, while 9 students applied appropriate strategies, etc. The average score in this case being 43/19 = 2.26 which is Good.

EGMU	Rubric	Score
E - Excellent	Fully demonstrates/accomplishes the attributes and behavior in the rubric	3
G – Good	Mostly demonstrates/accomplishes the attributes and behavior in the rubric	2
M – Minimal	Minimally demonstrates/accomplishes the attributes and behavior in the rubric	1
U - Unsatisfactory	Does not demonstrate/accomplish the attributes and behavior in the rubric	0

2

3. Analysis

Learning Outcome #1 Tasks	ENGY 610	ENGY 615	Average
Auditing and Monitoring	2.43	2.39	2.41
Rates and Economic Evaluation	2.11	2.07	2.09
Building Envelope	2.55	2.48	2.52
Heating and Cooling	2.30	2.26	2.28
Lighting and Retrofits	2.37	2.41	2.39

Learning Outcome #2 Tasks	ENGY 670	ENGY 775	Average
Solar Energy	2.51	2.44	2.48
Wind Energy	2.32	2.27	2.30
Ocean Energy	2.43	2.19	2.31
Biomass Energy	2.28	2.36	2.32
Distributed Generation	2.12	2.20	2.16

4. Interpretation

The students exceeded the minimum EGMU score for Learning Outcome #1 and Learning Outcome #2. The lowest scores were in "Rates and Economic Evaluation" for LO #1 and "Distributed Generation" for LO #2.

3

5. Close the Loop

Learning Outcome #1 Actions	ENGY 610	ENGY 615
Auditing and Monitoring	Distribute sample energy audits	Provide monitoring examples
Rates and Economic Evaluation	Practice rate calculations	Demonstrate cost analysis
Building Envelope	Compare typical envelopes	Perform heat load calculations
Heating and Cooling	Examine equipment specifications	Design HVAC system
Lighting and Retrofits	Provide case studies	Tour campus buildings

Learning Outcome #2 Actions	ENGY 670	ENGY 775
Solar Energy	Add solar reference materials	Use solar energy software
Wind Energy	Evaluate wind resources	Assess offshore wind development
Ocean Energy	Compare ocean energy devices	Collect and analyze ocean data
Biomass Energy	Contrast fuel sources	Evaluate available biomass
Distributed Generation	Perform site analysis	Design DG complete system

In order to improve student performance in Learning Outcome #1 and Learning Outcome #2, specific measures have been identified and summarized above. These measures will be implemented by the instructors of these courses.

4