Minimizing Cybersickness through Increased-Intensity Habituation

REU fellows: Erin Neaton1, Mohammed Baidas2, Jeffrey Chen3, Edwin Jain4, Stephan Brown5
Faculty Mentors: Drs. N. Sertac Artan1, Ziqian Dong2, and Helen Gu2

Affiliation: 1University of Michigan, 2School of Engineering and Computing Science, NYIT, 3University of California, Berkeley, 4Tufts University

Emails: eneaton@umich.edu, mbaidas@nyit.edu, jeffreychen@nyit.edu, jain49@gmail.com, stephanrb3@gmail.com, narton@nyit.edu, ziqian.dong@nyit.edu, hgu03@nyit.edu

ABSTRACT

Habituation is an effective method in decreasing cybersickness in virtual environments (VEs). It has not been explored in depth because users are often opposed to continued use following an initial use resulting in cybersickness. Recent research indicates that by decreasing the field of view (FOV) decreases symptoms, but also decreases presence. We hypothesize incorporating increased FOV settings into habituation will result in less cybersickness without affecting presence. This method of increased-intensity habituation will be valuable to therapy patients who, in order to receive effective treatment, need to stay in the VE for about 30-60 minutes without experiencing symptoms of cybersickness. We created a VE which has the capacity to manipulate both the FOV and blur edges. We tested it in this exploratory study to determine its potential effectiveness. The experiment shows the time a user spent in a VE increased over time without increased cybersickness. The visual manipulations did not seem to affect presence. We present a protocol to extend this research.

BACKGROUND

Cybersickness

- Sensory conflict theory \cite{1}
- Headaches, dizziness, nausea, fatigue
- Sex and age differences

Field of View Manipulations \cite{3, 4}

- Lowering visual inputs decreases cybersickness
- Decreases presence

Rotational Blurring \cite{5}

- Decreased cybersickness
- Minimal loss of presence

PRELIMINARY RESULTS

Field of View Manipulations (Vignette)

- Virtual Reality Sickness Score (VRSS) vs. Habituation Session

- Presence Score vs. Percent Field of View

- Time vs. Habituation Session

- One hour recovery period

POSSIBLE PROCEDURE

- 360 subjects to be randomly assigned to each condition
- Conditions: Habituation (control), increased intensity FOV, and incrementally decreased blurs
- Sessions over a three-day period per subject
- Two hours rest between each session
- Use virtual reality sickness questionnaire before and after each session and presence questionnaire after each
- Measure time spent in environment without cybersickness

REFERENCES

\cite{4} Nahal Norouzi, Gard Breder, and Greg Welch. Assessing Vignetting as a Means to Reduce VR Sickness During Amplified Head Rotations. 2015.
\cite{5} Pukhit Budhmatha, Mark Roman Miller, Abhshak K. Modi, and David A. Forsyth. Rotational Blurring: Use of artificial blurring to reduce cybersickness in virtual reality first person shooters. CoRR, abs/1710.02599, 2017.
\cite{8} Carlos M Coelho, Carlos F Silva, Jorge A Santos, Jenebrief Tichon, and Walid Walla. Contrasting the Effectiveness and Efficiency of Virtual Reality and Real Environments in the Treatment of Acrophobia. Psychologia, 6(2):203-216, 2008.

ACKNOWLEDGEMENT

This research was supported by the National Science Foundation (NSF) Research Experiences for Undergraduates (REU) program. We would like to thank our mentors and research fellows at the New York Institute of Technology who have provided valuable advice which strengthened our research path.

This project is funded by National Science Foundation Grant No. CNS-1559652 and New York Institute of Technology.