

Malware Detection in Android Smartphones

REU Fellow: Neha Bala **REU Mentor:** Professor Wenjia Li, Ph.D. Email: nbala02@nvit.edu, wli20@nvit.edu

ABSTRACT

Due to their popularity, Android smartphone are vulnerable to mobile malware. Mobile malware gains access to a device by tricking users into installing malicious applications. Researchers have taken different machine learning based approaches to detect malware. In this project, we build an existing system, however, instead of using a traditional machine learning algorithm, we implement a deep learning based model to get results with a larger dataset.

BACKGROUND

SigPID System:

- Performs three levels of data pruning - Uses Support Vector
- Machine & Decision Tree **Deep Learning Model:**
- Popular subset of machine learning - Performs best with a larger dataset

OBJECTIVES

input lave

Overall Objective:

Research malware detection in smartphones specifically in Android devices

Specific Objective:

Perform data analysis using deep learning based approach to determine malicious applications.

ARCHITECTURAL OVERVIEW

or-an-app-in-android-6-0 https://tchol.org/explore/png-full-form.html.http://dazzlersoftware.com le-ann-development-in-kota/ https://www.sec.cs.tu-hs.de/~danam/drehin/ https://www.ad https://www.arestack.com/features/analytics/ https://iconscont.com/icon/website-algorithm-3 https://www.iconfinder.com/icons/4051670/big_data_business_analytic_data_analysis_planning_predictive_analytic_presentative_analytic_research_icon https://www.iconfinder.com/cons/4099920/deep_diagram_learning_machine_network_nural_icon_https://www.becacorp.com/prioritize-phishing-protection-in-your-2019-security-strategy-part-3-anti-malware-de

RESULTS

Fig. 2. Significant Features By Data Pruning

Fig. 2. Significant Features By Data Pruning		Fig. 3 Post Data Pruning Results	
Feature	Feature Number	rigitor bot balar talling	griedante
android.permission.read_phone_state	2		
android.permission.access_network_state	3	Correctly Classified Instances	93.6047
android.permission.send_sms	5	Incorrectly Classified Instances	6.3953%
android.permission.receive_boot_completed	6	Kappa statistic	0.8721
android.permission.wake_lock	8	Kappa staustic	0.6721
android.permission.access_coarse_location	11	Mean absolute error	0.0903
android.permission.vibrate	13	Root mean squared error	0.2373
com.android.browser.permission.read_history_bookmarks	18	Relative absolute error	18.0556
com.google.android.c2dm.permission.receive	44	Root relative squared error	47,45919
android.permission.read_external_storage	46	noor relative squared error	47,4031

Fig 4. Correlation Between Features

Fig. 1 Original Data Set Results

95.3216%

4.6784%

0.9064

0.0703

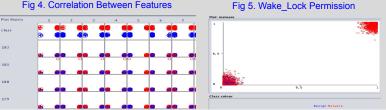
0.2076

14.0517%

41 5108%

Correctly Classified Instances

Incorrectly Classified Instances


Kappa statistic

Mean absolute error

Root mean squared error

Root relative squared error

Relative absolute error

DISCUSSION & CONCLUSION

- The following results were based off of permission features. Due to a delay in the data training process, other features such as API calls and URL features were not used to their full extent. If the dataset of features was larger, the deep learning based results could have been improved. - Implementing the SigPID with a deep learning based classifier, the results indicate that this approach is effective in detecting malware with a larger data set. Without data pruning the classifier detected 95.3216% of malware applications with

4.6784% of false detection. With data pruning the classifier detected 93 6047% of malware applications and 6.3953% of false detection.

93.6047%

6.3953%

0.0903

0.2373

18.0556%

47.4591%

REFERENCES

[1] Sun, L., Li, Z., Yan, Q., Srisa-An, W., & Pan, Y. (2016). SigPID: Significant permission identification for android malware detection. 2016 11th International Conference on Malicious and Unwanted Software (MALWARE) [2] Sun, L., Li, Z., Yan, Q., Srisa-An, W., & Pan, Y. (2018). SigPID: Significant permission identification for Machine-Learning-Based Android Malware Detection, Retrieved from https://ieeexplore.ieee.org/abstract/document/8255798 [3] "Support Vector Machine - Introduction to Machine Learning Algorithms," Medium, Towards Data Science, towardsdatascience.com/support-vector-machine-introduction-to -machine-learning-algorithms-934a444fca47. [4] "Challenges in Deep Learning." By, hackernoon.com/challenges-in-deep-learning-57bbf6e73bb.

ACKNOWLEDGEMENT

This project is funded by National Science Foundation Grant No. 1852316 and by New York Institute of Technology.

hidden laver 1 hidden laver 2

0

0